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ABSTRACT: A numerical procedure is developed for quickly and accurately finding 
the location and flow depth of a flow transition (critical control section) in open 
channels with discharge gradually varying along the channel length. General equa- 
tions are presented for trapezoidal, triangular, and rectangular cross sections. A 
numerical analysis of the procedure shows that the geometry of the channel cross 
section is an important factor determining the existence of a unique solution to the 
flow-transition problem in open channel flow. A procedure is described to decide 
if solutions exist and, if they do, to compute them and select an acceptable solution 
as the starting point for water-surface profile calculations. Test runs on a computer 
are performed to verify the speed and accuracy of the proposed procedure. Ex- 
amples involving the finding of location of flow transitions in open channels are 
used to illustrate the usefulness of the procedure. The findings from this study are 
beneficial to hydraulic engineers solving problems related to the design of lateral 
spillway channels and gutters for conveying stormwater runoff; to hydrologists using 
spatially varied flow equations to describe flow processes in natural channels; and 
to the enhancement of algorithms for spatially varied flow computations in hy- 
drologic simulation models such as the CREAMS field-scale model and the WEPP 
watershed model. 

INTRODUCTION 

The purpose  of this paper  is to develop a numerical  procedure  for quickly 
and accurately finding the location and flow depth of a critical control  section 
in spatially var ied open-channel  flow. In part icular ,  a special effort is made  
to: (1) Present  a procedure  to decide if solutions exist and,  if they do,  to 
compute  them and choose an acceptable one;  (2) per form test runs on a 
computer  to verify the speed and accuracy of  the p roposed  procedure ;  and 
(3) validate the procedure  using exper imenta l  data.  

The de terminat ion  of the water  surface profile in an open channel  under  
s teady flow conditions is an impor tan t  problem in hydraulic and hydrologic 
analysis and one that  has received considerable  at tent ion (Humpidge  and 
Moss 1971). There  has been a rapid  deve lopment  of computer  programs to 
compute  water-surface profiles in open channels recently. One aspect of 
this work involves finding the locat ion and flow depth of  critical control  
sections, or  flow transit ions (a point  in which a water-surface profile passes 
from subcritical to supercri t ical  flow, or  vice versa),  and then computing 
the water-surface profi le,  both forward and backward,  from the critical 
control  section. A flow transit ion can be caused by a change ei ther  in the 
flow direct ion,  slope, or  cross section of the channel ,  or  by lateral  inflow 
or outflow that  produces  a change in the flow state. It is relatively simple 
to compute  water-surface profiles when the location and/or  flow depth of 
a critical control  section are readi ly  identif iable (e.g. ,  by control  structures 
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such as sluice gates or weirs). A problem arises, however, when a flow 
transition develops at some unknown location along the channel reach. This 
problem is quite common in many constructed channels, such as side-channel 
spillways and gutters for conveying stormwater runoff, and natural channels, 
especially in channels with outlets restricted by ridges and heavy vegetation, 
and very flat terrace channels (Foster et al. 1980). 

Previous work on determining the location and flow depth of critical 
control sections by graphical methods was presented by Chow (1959) using 
an "equivalent critical depth channel" method proposed by Hinds (1926), 
by Escoffier (1958) using the transition profile technique, and by Smith 
(1967) using a modification of the transition profile technique formulated 
by Escoffier (1958). Although the concepts behind the graphical procedures 
are valid, the rapid development of computer-aided design techniques has 
demanded computational approaches implemented on modern high-speed 
computers. Moss (1971) derived practical procedures for computing the 
location and flow depth of a critical control section, either by hand or 
computer, in a trapezoidal side-channel spillway but neglected friction slope 
and the effect of slope on pressure head in his development. Humpidge and 
Moss (1971) described a computational procedure for determining the lo- 
cation of potential critical control sections in open channels. According to 
their procedure, the location of a critical control section in a channel reach 
is found when the numerator of the dynamic equation of spatially varied 
flow is negative immediately downstream of the upper section and positive 
immediately upstream of the lower station. The exact location at which the 
critical control section occurs is found by interpolation. This procedure, a 
computerized version of the transition profile method described by Escoffier 
(1958), requires that the whole channel reach be examined, for a given 
discharge, to determine the potential location of a critical control section, 
a time consuming procedure considering that the channel length must be 
divided into small distance increments to find the location of the flow tran- 
sition. Smith (1972) briefly discussed a computerized method for determin- 
ing the location of a critical control section in an open channel following 
an approach quite similar to the one presented by Humpidge and Moss 
(1971). 

Although there has been considerable progress during recent years in the 
development of computer programs to determine water-surface profiles in 
spatially varied open-channel flow, much less effort has been made in pro- 
posing computer algorithms for finding the location and flow depth of critical 
control sections. At the present time, there has not been any attempt to 
analyze the uniqueness of solution to the critical control section location 
problem as affected by channel cross-sectional geometry and the flow resist- 
ance equation. Although this problem has not been studied before, the 
recent implementation of spatially varied flow equations in computer sim- 
ulation models imposes a need for developing procedures to decide if so- 
lutions to the problem exist and, if they do, to compute them before com- 
putations of the water-surface profile can be initiated. 

STEADY, SPATIALLY VARIED FLOW 

Basic Assumptions 
The spatially varied flow, as defined in this paper, is the steady flow 

whose discharge varies gradually along the length of the channel. This def- 
inition indicates two major conditions: (1) That the flow is steady; that is, 
that the hydraulic characteristics of the flow remain constant for the time 
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interval under consideration; and (2) that the streamlines are practically 
parallel, that is, that the hydrostatic pressure distribution prevails over the 
channel section. In addition, the following basic assumptions are used in 
the subsequent developments: (1) The flow is one dimensional; (2) the slope 
of the channel segment is small and uniform; (3) the channel segment under 
study has constant alignment and geometry; (4) the momentum correction 
coefficient in the flow direction is constant; (5) the rate of lateral inflow is 
constant; (6) the flow at the upper end of the channel element is zero; and 
(7) the friction slope can be estimated from the Manning equation. 

Spatially Varied Flow Equations 
The net influx of momentum passing through the cross sections and pe- 

rimeter of a control volume defined along an incremental length of channel 
may be equated to the sum of external forces acting on the control volume. 
This procedure has been used by many investigators to derive the spatially 
varied flow equation. By considering an incremental channel length, Ax, 
(Fig. 1), and equating the change in momentum flux across the control 
volume of channel length Ax to the sum of the external forces acting upon 
it, the dynamic equation for spatially varied flow with uniform lateral inflow 
rate and uniform velocity distribution over the cross section can be derived 
and written in two forms as given by Chow (1959): 

-1--~- [d(Q?)] + ( S o - S f )  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (la) 
d y  
dx 9A 

and 

1 ~-YD dy = So - S s -  gA--- Z ~x dx . . . . . . . . . . . . . . . .  (lb) 

where y = flow depth (L); x = longitudinal distance along the channel 
(L); Q = flow rate (L3/T); V = average velocity over the cross section (L/ 
T); So = channel bottom slope (dimensionless); S r = friction slope (di- 
mensionless); A = flow cross-sectional area (L2); D = hydraulic depth 
(L); and g = acceleration due to gravity (L/T 2) (note: L represents length 

dg 
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and T represents time in the dimensions of variables). A velocity coefficient 
is sometimes used in (1) in an attempt to correct for nonuniform velocity 
distribution over the cross section due to friction or channel curvature. 

The steady, spatially varied flow equations are used in the chemicals, 
runoff, and erosion from agricultural management systems (CREAMS) model 
(Knisel 1980) and the water erosion prediction project (WEPP) watershed 
model (Stone et al. 1990) to describe flow processes in small stream channels 
including terrace channels, diversions, grassed waterways, hillside ditches, 
surface drains, tail ditches, and other major flow concentrations (Foster et 
al. 1980). The approach used in CREAMS and WEPP to compute water- 
surface profiles in natural channels is based on a procedure that approxi- 
mates the energy gradeline along the channel using a normalized version 
of (1) for a triangular channel cross section with a critical control section 
located at the channel outlet. Regression equations were fitted to the so- 
lutions of the normalized spatially varied flow equation for a range of chan- 
nel side slopes, surface roughnesses, and flow depths and discharges at the 
end of the channel. The effects of assuming triangular channel cross section 
and critical control section at the channel outlet on the calculation of water- 
surface profiles in natural channels need to be investigated. Moreover, the 
occurrence of a critical control section within the channel reach will affect 
the water-surface profile calculations based on a preassumed control at the 
channel outlet. As a consequence there will be a change in the bottom 
hydraulic shear by some calculated amount that in turn will lead to more/ 
or less sediment transport, which will have consequences in the final channel 
erosion estimates. 

Conditions for Developing Critical Control Section 
For convenience, the derivation of the conditions for developing a critical 

control section is briefly restated here. A critical control section occurs where 
the specific energy, E, for a steady one-dimensional flow (the energy per 
unit weight relative to the bottom of the channel) is a minimum for a given 
discharge (Henderson 1966). The equation for specific energy in a channel 
of small slope with uniform cross-sectional velocity distribution can be writ- 
ten as: 

Q2 
E(y) = y  + - -  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (2) 

20,4 2 

Differentiating (2) with respect to y and noting that dQ/dy = 0 and dA/dy 
= T = flow top width (L), gives: 

dE Q2T 
= 1 - ~A 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (3) 

The second term of the right-hand side of (3) is the square of the Froude 
number, F. A critical control section occurs where dE/dy = 0, or: 

/ ~ "  T \ 1/2 
F =  Q ~ - ~ )  = 1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (4) 

For spatially varied open-channel flow with distributed lateral inflow, the 
flow at a distance x from the upper end of the channel is defined by: 

Q = qLx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (5) 
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where qL = the distributed lateral inflow rate (L2T-1). Substituting (5) 
into (4) and solving for x gives a relation between the location and depth 
at a critical control section: 

qL 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (6) 

At a critical control section, the left-hand side of (lb) is zero and thus 
so is the right-hand side. Then, at a critical control section: 

2QqL 
S o -  S I gA2 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7) 

Substituting (5) into (7) and eliminating x by using (6), gives: 

So=Sr+  2qL 
(gAT) t/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 8 )  

The procedure to be followed in finding a critical control section is to 
first express S r in terms of y. Then solve (8) for y = Yc (flow depth at the 
critical control section) and use Yc in (6) to find x = xc (location of the 
critical control section). 

The calculations to determine the location and flow depth of a critical 
control section provides a mean for determining whether the occurrence of 
a flow transition is possible. If there is no solution to (8) or if x, as determined 
from (6) is greater than the actual length of the channel reach, a flow 
transition is not possible within the channel reach under consideration. In 
this situation, the flow will be subcritical along the entire channel reach and 
subject to a control at the downstream end. This control may, of course, 
take the form of an free-overfall beyond the region of lateral inflow. If a 
critical control section does exist within the channel reach, flow will be 
subcritical upstream of this section and supercritical downstream. If, in this 
situation, there is a control at the downstream end of the channel reach, a 
hydraulic jump will occur if the controlled depth is large enough and may 
even move upstream and drown out the critical control section. 

Flow Resistance Equations 
The Manning flow resistance equation is the most widely used equation 

to relate the flow rate to the friction slope. The Manning equation is: 

S 1/2 

where n = the Manning coefficient of roughness (L-1/3T); and R = the 
hydraulic radius (L). Using R = A/P and Q = A V  in solving (9) for Sy 
gives: 

n2Q2P4/S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (10) 
Sr = A lo/3 

in which P is the wetted perimeter (L). Using (4) to eliminate Q in (10) 
and then substituting into (8) gives: 
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/ P \ / P \  ~,T) ~A)  m 2qL . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (11) 
So = gn 2 + ( g A T ) m  

Eq, (11) is solved for the critical depth of the critical control section. 

Geometric Properties of Channel Section 
For a fixed location in a general trapezoidal channel with bottom width 

b(L)  and side slopes Zl and z2 (Fig. 2), flow cross-sectional area, top width, 
and wetted perimeter,  are related as: 

n ( y )  = (b + cty)y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (12) 

T(y) = b + 2qy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (13) 

P(y) = b + czy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (14) 

in which c1 and c2 = constants given by: 

(zl + z2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (15) 
q -  2 

c2 = (1 + z2) t/2 + (1 + zzZ) '/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (16) 

A general trapezoidal channel can be classified as triangular (b = 0, ct > 
0), rectangular (b > 0, ci = 0), or trapezoidal (b > 0, cl > 0). Also note 
that ct > 0 just when c2 > 2. 

NUMERICAL ANALYSIS 

In a spatially varied flow with uniform lateral inflow, there may be a 
location at which it is possible to satisfy the condition given by (7), i.e., 
there is a value of x, from (6), giving a solution to the two simultaneous 
( lb)  and (7). A numerical procedure to find this location, if it exists, and 
the flow depth at that location is presented here. The numerical procedure 
is developed for three types of channel cross section: trapezoidal, triangular, 
and rectangular. 

Trapezoidal Channel 
Substituting (12)-(14) with b > 0 and q > 0 into (11) gives: 

(Y~ ~ U k "  71/3  

L", u / , 

where 

4qLCl/2 
13 (gl/Zb3a) 

k = 1 2cl 
C2 

+ 1 3 [ u ( u  2 - 1)]  - ` /2  . . . . . . . . . . . .  ( 17 )  

113 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (18) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (19) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (20) 
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A =  a r e a  
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b '  

P - b +  I t + l  s 

FIG. 2. Definition Sketch of Trapezoidal Channel Cross Section 

T 2c~v (21) 
u = g = 1 + - b - -  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

This form cannot be solved analytically, so a numerical procedure must 
be used. Define h(u), u > 1, as: 

u - k _ 1)]_,/2 h(u) = a + [3[u(u 2 - So �9 . . . . .  (22) 

We need to solve h(u) = 0 for u > 1. Since h(1) = ~ and h(m) = -So ,  
a solution exists. Differentiating (22) with respect to u produces: 

h'(u)  = car(u) - ~G(u) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (23) 

where 

u . . . . . . . . . . . . . . . . . .  
f(u) = \u-g-~_ l ]  3u2(u 2 1) 

and 

G(u) = [u(u2 - 1)]-3a(3u2 - 1) (25) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Differentiating (23) with respect to u produces the second derivative of 
function h(u): 

h"(u) = ccM(u) + f3N(u) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (26) 

where 

( u  - k '] in 
M(u) = 2 \u-~---~_ l ]  

. [ 2 u 6 - 2 0 k u 5  + (7 + 20k2)u4 + 1 0 k u 3 - ( 1  + 21k2 )u2 -  6ku + 9k 2] 
9(u - k ) u 3 ( u  z - 1 )  2 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (27) 
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3 N(u) = -~ [u(u 2 - 1)1-5/2(5u 4 - 2u 2 q- 1) . . . . . . . . . . . . . . . . . . . . . .  (28) 

In general, there may not be a unique solution. In the case of h"(y) 
positive, h ' (y)  is strictly increasing and, since h ' (=)  = 0, h ' (y)  is negative. 
This says that h(u) is decreasing from h(1) = ~ to h(oo) = -So.  Thus, in 
this case, there is a unique solution to this problem. Extensive numerical 
calculations showed that h"(u) is positive when k - 0.512 (or Cl/Ca > 0.244). 
This fact has been mathematically verified for k --- 0.398. [This is done by 
showing that M(u) is positive since N(u) is always positive]. In the special 
case of a channel with equal side slopes, z, this corresponds to z >- 0.559. 
In practice, this is frequently the case in most constructed and natural 
channels. 

For computational purposes, when there are multiple solutions within the 
channel reach, the one closest to the lower end of the channel is chosen 
because it will likely be the control (Chow 1959). The following procedure 
aims to find the smallest solution. 

A solution to h(u) = 0 can be obtained as follows: start iterations with 
u > 0 such that h(u) > 0 and h'(u) < 0. Use Newton's method (Press et 
al. 1987) of stepping as long as h(y) > 0 and h '(y)  < 0. If the step is larger 
than a predetermined value, the step is limited to that value. If a location 
with h(u) > 0 and h'(u) >- 0 is found, a predetermined amount can be added 
to u for the next step. If in stepping, a value for u is reached for which h(u) 
- 0, then the bisection method on the interval between this and the previous 
step will find a root of h(u) = 0. This stepping procedure will converge to 
a solution, but it cannot be guaranteed that the solution is the first root of 
h(u) = 0. In this case, it should be close to the first solution. Limiting the 
stepping size improves the chance of obtaining the first solution. 

Triangular Channel 
Substituting (12)-(14) with b = 0 and c~ > 0 into (11) gives: 

S O = i?l.y-1/3 q_ [~y-3/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (29) 

where 

(g-~)  (C2~ 4/3 
= - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 3 0 )  

\ q /  

(~) ml (31) 
= q L  C-~l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

This form cannot be solved analytically, so a numerical approach must 
be undertaken. Define h(y) as: 

h(y) = ay-V3 + fSy-3a _ So �9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (32) 

h '(y) is negative so h(y) is strictly decreasing from h(0) = oo to h(~) = 
-So.  Thus h(y) = 0 has a unique solution. The second derivative h"(y) is 
positive, so Newton's method will converge if iterations start at a y > 0 with 
h(y) > 0. 
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Rectangular Channel 
Substituting (12)-(14) with b > 0 and Cl = 0 into (11) gives: 

So = a(1 + q~y)4/3y-1/3 + 13y-lie . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .(33) 

where a = gn 2, q~ = 2/b, and 13 = 2qz fbg  1/2. 
This form cannot be solved analytically, so a numerical approach must 

be used. Define h(y) as: 

h(y) = a(1 + q~y)4/3y-1/3 + f 3 y - m  _ So . . . . . . . . . . . . . . . . . . . . . . .  (34) 

h'(yo) = 0 has a unique solution (minimum) satisfying: 

2C~yo~/6(1 + tpyo)l/3(~y o - 1/3) = 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (35) 

Thus h(y) decreases from h(0) = o0 to its minimum at h(yo) and then 
increases to h(oo) = oo. It is also true that h"(y)  > 0. Thus h(y) = 0, y > 
0 has no solution when h(yo) > O, one solution when h(yo) = O, and two 
solutions when h(yo) < 0. It is not necessary to solve for Yo. Newton's 
method can be used as follows: Start iterations at y > 0 with h(y) > 0 and 
h '(y)  < 0. If there is a solution, Newton's method with increasing estimates 
will converge to the smallest solution. If there is no solution, Newton's 
method will eventually produce a y value with h '(y)  > 0. 

PERFORMANCE AND EVALUATION TESTS 

Computational Efficiency 
Test runs of the numerical procedure were performed on a VAX 750 

running under VAX/VMS to determine computational efficiency (speed and 
accuracy) of the proposed numerical procedure. Computational efficiency 
was tested using two problem sets. The first problem set consisted of all 
combinations of the values in the six columns of Table 1, except those with 
a zero bottom width and zero side slope. The second problem set used the 
critical flow depth values shown in the seventh column of Table 1 in place 
of the bottom slope values. Eq. (11) was then used to compute bottom 
slope from the critical depth values. Thus for the second problem set, the 
answer was known [unless the critical flow depth was not the first solution 
to (11)]. In both sets of problems, the testing program terminated a problem 
as soon as it identified that there was a solution or that the location of the 
critical control section exceeded the lower end of the channel reach by 1 
km (in applications for which the routines were developed, channel lengths 
were considerably less than 1 km). In the second set of problems, those 

TABLE 1. Parameter Values Used in Testing Proposed Procedure 

Second 
Manning's Bottom First side side Lateral Bottom Critical 

n width slope slope inflow slope depth 
(1) (2) (3) (4) (5) (6) (7) 

0.01000 0.00000 0.00000 0.00000 0.00001 0.00001 0.00001 
0.01167 3.33333 2.00000 2.00000 0.00100 0.00010 0.00100 
0.01333 6.66666 4.00000 4.00000 0.10000 0.00100 0.10000 
0.01500 10.0000 6.00000 6.00000 10.0000 0.01000 1.00000 

0.10000 10.0000 
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with bed slopes greater than 100 m/m were not solved. This resulted in 
6,096 problems in the first set and 5,588 problems in the second set. 

In the first set of problems, the computed error was measured by the 
relative error between the left- and right-hand sides of (11). This error 
measures how well the computed solutions satisfy (11). In the second set 
of problems, the computed error was measured by the relative error between 
the correct answer and the computed answer. This error measures how well 
the computed answer agrees with the correct answer. In both cases, -log(error) 
is the approximated number of decimal places to which the two compared 
values agree. 

Many of the problems tested (Table 1) may represent unrealistic situa- 
tions. About 1.4% of the problems had no solution. About 62% had so- 
lutions (critical control sections) exceeding the real length of the channel. 
The possibility of multiple solution was verified with the second set of 
problems. In 16 problems of the second problem set, the "known" solution 
was not the first solution of (11). These problems were included in estimating 
speed of calculation and were excluded in accuracy evaluations. 

In both problem sets, the internal tolerance used in testing for conver- 
gence was 0.0001. The first set required 0.0046 s/problem and the second 
set 0.0026 s/problem of CPU time. In the first problem set, the maximum 
computational error was 2.4 • 10 -4. Only four problems in the first problem 
set presented a computational error greater than 1.0 • 10 -4. These were 
cases for which flow transitions were found exceeding the lower end of the 
channel reach by 1 km. The maximum computational error was 6.0 • 10 -5 
for the second problem set. 

Example of Method 
The numerical procedure was used to determine the critical control section 

(flow transition) in a lateral spillway channel of uniform cross section (Chow 
1959). To allow a comparison to be made, the problem solved was identical 
to that solved by Chow (1959) using the "equivalent critical depth channel" 
graphical procedure (Hinds 1926). To further test the proposed procedure, 
experimental data from a symmetrical V-shaped tilting flume were also used 
(Brutsaert 1971). 

Chow's Example 
Chow (1959, p. 342) presented a worked example for finding the location 

and depth of a critical control section in a spatially varied flow system. A 
trapezoidal lateral spillway channel 121.92 m (400 ft) long was designed to 
carry a lateral inflow rate of 3.716 m2/s (40 sq ft/s). The cross-sectional area 
had a bottom width of 3.048 m (10 ft) and side slopes of 0.5:1. The longi- 
tudinal slope of the channel was 0.1505. Manning's n is taken as 0.015, and 
a velocity distribution coefficient of 1.0 is assumed. 

The location and flow depth of the critical control section were computed 
using the numerical procedure described in this paper. These are illustrated 
in Fig. 3 with the equilibrium water-surface profile computed using a finite 
difference version of (1) and the method presented by Chow. Distance x is 
measured from the upper end of the spillway channel. From Fig. 3 the 
critical control section is located at x = 49.63 m and at a depth of 5.37 m, 
showing full agreement with Hinds' graphical method used by Chow. 

Brutsaert's Experiment 
Brutsaert (1971) conducted a series of flume experiments to verify the 

applicability of a selected integration procedure for solving the Saint-Venant 
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equations. The experimental flow system consisted of a symmetrical V- 
shaped 12.04-m (39.5-ft) long tilting flume with side slopes of 1 on 1. No 
flow entered the upstream end and a velocity distribution coefficient of 1.0 
was used. Inflow to the system was introduced laterally at a constant rate, 
regulated with an adjustable weirplate in a constant head tank. 

The computed location and flow depth of the critical control sections 
using the procedure described herein are shown with the computed and 
measured equilibrium water-surface profiles for three flume experiments in 
Figs. 4-6.  From Fig. 4, the critical control section was found at x = 12.04 
m (channel outlet) and at a depth of 0.358 m. This result showed full 
agreement with Brutsaert's experimental results. In this particular case, the 
critical control section was clearly influenced by an outlet structure (free 
overfall) rather than by lateral inflow. As a consequence, the predicted 
water-surface profile was slightly lower as compared to the actual profile. 
From Figs. 5 and 6, the critical control sections were found at x = 4.728 
m and at a depth of 0.256 m (Fig. 5) and a tx  = 0.845 m at a depth of 0.124 
m (Fig. 6), respectively, from the channel upstream end. From Fig. 5, the 
flow profile changed from subcritical to supercritical at about 2/5 of the 
channel length. From Fig. 6, the flow transition occurred at a position very 
close to the upper end of the channel. Again, these results fully agreed with 
the experimental results of Brutsaert. 

Nonzero Upstream Inflow 
The proposed procedure can be expanded to address the more general 

cases of nonzero flow at the upstream boundary of the channel by intro- 
ducing the concept of effective channel length. This concept is illustrated 
in Fig. 7. The effective channel length, Le, is the length of a channel required 
to produce the outflow discharge, Qe, given the lateral inflow rate qg and 
upstream inflow rate Q~. Applying the principle of conservation of mass: 

Qe = qzL + Qi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (36) 

where L = the actual length of the channel (L). The outflow discharge can 
also be computed as: 

Qe = q~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (37) 
L, 
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FIG. 6. Equilibrium Water-Surface Profile for 2% Slope and 12.04-m-Long Tilting 
V-Shaped Flume with yc = 0.124 m at Xc = 0,845 m from Upstream End 
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FIG. 7. Illustration of General Case for Concentrated Flow in Field-Sized Channel 
(length L) with Upstream Inflow (Qi), Uniform Lateral Inflow (qL), and OutflOw (Q~). 

Substituting (37) into (36) and solving for Le: 

Le = L + Q---/~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (38) 
qL 

The proposed procedure can be applied by solving the spatially varied flow 
equations [(1)] for a channel of length L e given by (38). 

CONCLUSIONS 

A numerical procedure was described for quickly and accurately finding 
the location and flow depth of a critical control section in open channels 
with discharge gradually increasing along the length of the channel. It was 
found during this study that there are situations where multiple solutions 
exist. 

A procedure was developed to decide if solutions exist and, if they do, 
to compute them and select an acceptable solution as the starting point for 
water-surface profile calculations. Test runs were carried out on a computer 
to verify the speed and accuracy of the procedure and experimental data 
were used to validate the procedure. A good agreement between the com- 
puted and measured location and flow depth of critical control sections was 
obtained for graphic example and a set of flume experiments. 

The development of a critical control section within a channel reach 
subject to spatially varied flow with uniform lateral inflow depends on flow 
conditions and channel characteristics, including, channel width, channel 
slope, surface roughness, and cross-sectional geometry. Results from a wide 
range of flow conditions and channel characteristics examined in this study 
showed that the geometry of the channel cross section is an important factor 
determining the existence of a unique solution to the critical control section 
location problem in open channel flow. The study conducted here was 
limited to three channel cross-sectional geometries: trapezoidal, triangular, 
and rectangular. There were no problems in finding unique solutions, when 
they exist, for triangular and rectangular channel cross sections. However, 
for trapezoidal channel cross sections, there were cases with multiple so- 
lutions within the channel reach. Sometimes multiple solutions were very 
close such that considering one or another as the critical control section 
would not affect the reliability of the computed water-surface profiles. How- 
ever, in some cases, the solutions were far enough apart to affect significantly 
the accuracy of the computed water-surface profiles depending on what 
solution was chosen as the starting point. Although the reasons for the 
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occurrence of multiple solutions in trapezoidal channel cross sections are 
not evident, these findings demonstrate a need for further developments 
toward a more comprehensive mathematical analysis of the conditions for 
developing a critical control section in complex channel sections. Concurrent 
flume experiments should be carried out to validate the findings of the 
mathematical analysis. 

The numerical Procedure described in this paper is beneficial to hydraulic 
engineers solving problems related to lateral spillway channel design and to 
hydrologists using spatially varied flow equations to describe flow processes 
in natural channels. The procedure can also be used to extend and enhance 
the application of hydrologic simulation models such as the CREAMS field- 
scale model and the WEPP watershed model by eliminating the limiting 
assumption of triangular cross section and preassumed critical control sec- 
tion at the channel outlet. 
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